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ABSTRACT 

 

In this paper we propose monitoring of blood pressure and heart rate using Discrete Fourier Transform and 

Pan-Tompkins algorithm to achieve higher wear ability and high accuracy. Motion artifacts induced by the 

head movements are deals with machine learning framework to enable practical application scenarios. Here we 

suggest to place all the electrocardiogram (ECG) and photoplethysmography (PPG) sensors behind two ears to 

successfully acquire weak ear -ECG/PPG signals using a semi customized platform. After introducing head 

motions towards, we apply an unsupervised learning algorithm, Pan Tompkins to learn and identify raw 

heartbeats from motion artifacts compacted signals. Furthermore, we propose another unsupervised learning 

algorithm to filter out distorted/faking heartbeats, for the estimation of ECG to PPG pulse transit time (PTT) 

and HR. Specifically, we introduce a Discrete Fourier Transform (DFT) to quantify distortion conditions of raw 

heartbeats referring to a high-quality heartbeat pattern, which are then compared with a threshold to perform 

purification. The heartbeat pattern and the distortion threshold are learned by a K-medoids clustering approach 

and a histogram triangle method, respectively. Afterwards, we perform a comparative analysis on ten PTT or 

PTT&HR-based BP learning models. 

Keywords: Electrocardiogram (ECG), Photoplethysmography (PPG), Pulse Transition Time (PTT), Machine 

Learning, Signal Processing, Pan Tompkins algorithm, Discrete Fourier Transform. 

 

I. INTRODUCTION 

 

High blood pressure increases the risk of disease and 

death in the population.  As a clinical risk factor it is 

of major public health importance and compared to 

other leading risk factors accounts for the third 

largest proportion of disability adjusted life years lost 

globally after dietary factors and cigarette smoking. 

Blood is circulated through the body by the heart, 

and the beating of the heart leads to peaks and 

troughs in blood pressure.  The peaks are called 

systolic and the troughs diastolic.  Blood pressure is 

measured as systolic/diastolic, e.g. 140/90 mmHg 

(pressure equivalent of millimeters of mercury). 

Blood pressure varies normally from minute to 

minute, and over days and weeks, but a consistently 

raised blood pressure increases the risk of certain 

diseases. Cardiovascular risk increases above values of 

115/70, but blood pressure persistently above 140/90 

mmHg is accepted as an appropriate reason to 

consider treatment. The measurement of blood 

pressure is an important consideration because it 

requires a certain level of skill, an appropriate setting 

and well maintained and calibrated equipment. A 

measurement should be based on at least two reading.  

 

High blood pressure increases the risk of a range of 

diseases: coronary heart disease (angina, heart 

attack),stroke (both that due to a blood clot and that 

due to bleeding),heart failure (heart strain - especially 

left ventricular),aortic aneurysm (dilated aorta with 

risk of rupture and massive internal haemorrhage ), 

peripheral vascular disease (reduced blood supply to 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

16 

the limbs),chronic kidney disease (including renal 

failure),retinal disease (visual impairment).                                                                       

 

Typical values for a resting healthy adult human are 

approximately 120 mmHg (16 kPa) systolic and 80 

mmHg (11 kPa) diastolic written as, 120/80 mmHg. 

These measures of arterial pressure are not static, but 

undergo natural variations from one heartbeat to 

another and throughout the day, they also change in 

response to stress, nutritional factors, drugs, or 

disease. The Table 1 shows the normal healthy Blood 

Pressure ranges for adults aged 18 and older. 

 

The values of Blood Pressure vary significantly 

during the course of 24 hours according to an 

individual’s activity. Basically, three factors namely, 

the diameter of the arteries, the cardiac output and 

the state or quantity of blood are mainly responsible 

for the Blood Pressure level. Table 1. Age related 

Blood Pressure range 

Table 1. Age Related Blood Pressure Range 

 
Wearable computers are paving a promising way for 

pervasive smart health wearables for people around 

the world, especially for developing worlds where 

major problems include lack of health infrastructure 

and limited health coverage. They can provide health 

management in a more affordable manner than 

traditional health services, especially when long-term 

continuous health data collection is needed for 

effective diagnosis/treatment of chronic diseases like 

hypertension. Many investigations in wearable BP 

monitoring have been reported and summarized in 

several recently published surveys.  

The most popular BP estimation theories are based on 

the fact that BP is often reversely correlated with the 

pulse transit time (PTT), i.e., the blood wave 

propagation time between two arterial sites. In the 

arterial vessel, a higher BP usually generates a higher 

velocity of propagation, which results in a smaller 

time (i.e. PTT) for the wave to travel along the vessel, 

and vice versa. To measure the PTT start and end 

time, the electrocardiography (ECG) and 

photoplethysmography (PPG) signals are the most 

widely used ones. The ECG heartbeat peak 

corresponds to the pressure wave occurrence time on 

the proximal site, i.e., the thoracic aorta, and thus can 

represent the PTT start time. The PPG heartbeat foot 

corresponds to when the pulse arrives the distal site, 

i.e., the location where the PPG sensor is placed, and 

thus can reflect the PTT end time. In these works, 

the most frequently applied ECG/PPG sensors 

placement methods are two-wrists/finger, 

chest/finger, and chest/chest.  

 

However, these placement approaches may impact 

the wearability and comfortableness, considering the 

former two require extra connection overhead or 

wearing more than one device, and the last one may 

need a chest strap to fix the sensors and suffer from 

sweating. Some works proposed an in-ear PPG signal 

monitor to measure HR and other information, but 

they did not acquire ECG signal and measure BP. 

Another work proposed placing the PPG sensor 

behind the left ear and placing two ECG electrodes 

behind the left ear and neck, respectively. However, 

the signal quality may be impacted if the collar coat 

touches the electrode on the neck in long-term daily 

applications. Moreover, this work did not evaluate 

the BP estimation performance after obtaining the 

PTT measurements, and did not consider daily 

movements-induced motion artifacts. 

 

Another significant concern lacking of enough 

attention and study is whether BP estimation systems 

can tolerate to large amounts of motion artifacts, 

since the body movements in long-term daily 
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applications inevitably induce time varying skin-

sensor contact variations which usually impact or 

even corrupt the ECG and PPG signals acquired. The 

accelerometers can be applied to track the motion 

information, which can be used as a reference for 

motion artifacts removal, such as discarding signal 

periods or adaptive filter-based motion artifact 

cancellation.  

 

Moreover, there are diverse BP modeling theories 

and strategies being studied, to deal with the 

underlying complicated blood pressure wave 

generation and propagation mechanisms, 

nevertheless, the comparative analysis of major BP 

models is rather limited. One thing worth noting is 

that, we have previously reported a single-arm-worn 

ECG&PPG-based blood pressure monitors which can 

provide a super wearability, but in this study we 

focus on another novel easy-wearing blood pressure 

monitor with novel sensor placement methods. 

Besides, body movements during blood pressure 

estimation were not considered in our previous work, 

however, in this study, we have made lots of efforts 

to deal with motion artifacts towards all-day 

application scenarios. One new effective method is 

need for solving these problems. 

 

II. METHODS AND MATERIAL   

 

A. System Overview 

The proposed machine learning-enabled system is 

illustrated in Figure 1. The top part (Figure 1a) gives 

the customized hardware prototype and the sensors 

placement method for ear-ECG and PPG signals 

acquisition. The bottom part (Figure 1b) 

 

 

 

 
Figure 1. The proposed wearable cuff-less SBP and HR monitoring from motion artifacts-sensitive ear-

ECG/PPG signals. 
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shows the flow of the signal processing and HB/SBP 

estimation algorithm including three stages, i.e., stage 

I – supervised learning of heartbeat (HB) 

identification, stage II – unsupervised learning of 

signal quality labelling and signal purification, and 

stage III – HR estimation and supervised learning of 

SBP estimation. The proposed algorithms can be run 

on the mobile devices such as cellphones. Therefore, 

no computation resources will be introduced to the 

wearables and the form factor will not be increased. 

One thing worth noting is that the ML-based 

algorithms are expected to deal with large amounts of 

motions artifacts in daily applications, which is very 

challenging but necessary to enable 24-hour 

continuous blood pressure/heart rate tracking. 

 

B. Customized Hardware Platform and Sensors 

Placement. 

The customized hardware platform shown in Figure  

1a  

includes two parts, i.e., the ECG and PPG 

subsystems. In the former one, the ECG signal is 

acquired by an ADS1299 24-bit analog-to-digital 

(ADC) with a sampling rate of 500 Hz on a TI 

ADS1299EEG-FE evaluation board (green one)and 

is then sent through the SPI port to a TI TivaTM C 

series LaunchPad (red one), which is equipped with 

an ARM Cortex M4 microcontroller to configure 

the ADC and relay the signal to a PC via the USB 

port. In the latter one, the PPG signal is acquired by 

a 22-bit ADC with a sampling rate of 128 Hz on a TI 

AFE4490SPO2 evaluation board, which also owns 

an MSP430F5529IPN microcontroller to configure 

the ADC and relay the data to the PC. A higher 

sampling rate for ECG is based on the consideration 

that it is used for both HR and PTT estimation. This 

prototype can be conveniently used in long-term 

applications after removing evaluation-specific 

components and adding a wireless module.  

 

The sensors placement method proposed is illustrated 

in the top right part of Figure  1a, where the R/B/S 

correspond to the reference/bias/signal electrodes for 

single-lead ECG acquisition, and P represents the 

sensor for PPG measurement. All the sensors can be 

integrated into glasses or ear headsets to achieve a 

much higher wearability and comfortableness, 

compared with the chest or wrists placement.  

C. Dataset Recording  

The customized platform was applied to acquire an 

ear ECG/PPG dataset from fourteen subjects, to 

evaluate the effectiveness of the proposed proof-of-

concept system. The data collection was approved 

by the university IRB office and the informed 

consent was obtained from all participants. The data 

collection comprises a thirty-minute training 

session and a thirty-minute testing session for each 

subject. Each session can be further split to fifteen 

two-minute trials. During the first seven trials, the 

subject stayed still to get low SBP conditions, and 

during each of the other eight trails, the subject 

rode a recumbent exercise bike in the first minute 

and stayed still in the second minute, to perturb the 

SBP to a larger range similar to the methods used in 

many studies.. The reference SBP, denoted as 

SBPcuff, was measured on the left arm in the second 

minute of each trial, using an ambulatory BP 

monitor CONTEC ABPM5.Correspondingly, the ear 

signals in the second minute of each trial are used 

for HR and SBP estimation. The chest-ECG signal 

was also collected to obtain the ground truth of 

heartbeat occurrence time.  

 

One thing worth noting is that deleting time 

periods with distortions may over-discard signal 

periods which are still of an acceptable signal 

quality. It means that there may still be a portion of 

good heartbeats during a signal period with 

distortions. So, it may be helpful to provide a high 

temporal resolution of BP estimates (we aim to 

report minute-level BP), if the good heartbeats can 

be extracted from all signal periods based on beat-

specific quantitative distortion values. We notice 

that the ear signals are frequently impacted by 
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motion artifacts, even the users take a sitting or 

standing position, there are still lots of motion 

artifacts, such as continuous background motion 

artifacts due to uncontrolled neck muscle and blood 

vessels movements, and motion artifacts induced by 

little head movements such as slightly looking 

around or up and down. Taking practical scenarios 

into account, we further introduced much severer 

motion artifacts by performing head movements 

including shaking the head and nodding for one 

third of each signal period. Specifically, in the 

second minute of each trial, the subject was asked to 

shake the head during the first ten seconds and nod 

during the fourth ten seconds. These head 

movements corrupt a large portion of signals and 

make heartbeat identification much more 

challenging. Therefore, it is necessary to utilize lots 

of signal periods even distorted by motion artifacts 

to guarantee the high-resolution BP tracking.  

 

D. Unsupervised Learning of HB Identification  

The stage I of the proposed algorithm in Figure  1b 

performs raw heartbeat identification from both 

pre-processed ear-ECG and PPG signals. 

Considering the ECG signal is of relatively richer 

signal characteristics (especially the QRS complex) 

than the PPG signal we firstly introduce an 

advanced unsupervised machine learning approach 

for raw ECG heartbeats identification, based on 

which the raw PPG heartbeat pairs are then 

determined by a minima searching method. 

1) Signal Pre-processing  

The raw ear-ECG and PPG signals are both processed 

by a six-order Butterworth bandpass filter (2-30 Hz 

and 0.5-8 Hz, respectively). Then PPG is resampled to 

500 Hz to obtain a same time resolution as ECG. More 

analysis about the signal quality with deliberately 

introduced severe motion artifacts will be given later.  

 

2) ECG-based and PPG-based Heartbeat Identification  

To identify raw heartbeats from weak ear-ECG 

signal impacted or corrupted by large amounts of 

background and deliberately introduced motion 

artifacts, our previously reported Pan Tompkins 

algorithm is applied. An analog filter bandlimits the 

ECG signal at 50 Hz. An analog-to-digital converter 

(ADC) samples the ECG at a rate of 200 samples/s. 

The resulting digital signal passes successively 

through a sequence of processing steps that 

includes three linear digital filters implemented in 

software. First is an integer coefficient bandpass 

filter composed of cascaded low-pass and high-pass 

filters. Its function is noise rejection. Next is a filter 

the approximates a derivative. After an amplitude 

squaring process, the signal passes through a 

moving-window integrator. Adaptive thresholds 

then discriminate the locations of the QRS 

complexes.  

 

E. Unsupervised Learning of Signal Quality Labelling 

and Signal Purification (SQLSP) 

 

Considering that large amounts of back ground and 

head movements-induced motion artifacts usually 

severely corrupt a large portion of weak ear signals, 

many highly distorted or faking heartbeats in some 

signal segments need to be suppressed. Therefore, 

an unsupervised learning approach is proposed to 

automatically purify the raw heartbeats, as shown 

in stage II of the proposed algorithm in Figure  1b. 

Two major considerations made here include: 1) 

choosing an unsupervised learning strategy not a 

supervised one, and 2) further learning motion 

artifacts-sensitive behaviors of raw PPG heartbeats 

not ECG heartbeats. The former one is based on the 

finding that it is hard to generate ground truth 

signal quality labels for raw heartbeats (e.g., 

labelled as a good or poor quality level when using 

a binary labelling method) which are necessary for 

supervised signal quality learning.    Firstly, the 

background motion artifacts induced by 

uncontrolled neck muscle and blood vessels 

movements, especially with exercise stress, usually 

occur randomly making it difficult to manually 

label the signal quality for raw heartbeats. 
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Moreover, the head movements deliberately 

introduced (shaking and nodding) to generate more 

critical motion artifacts cannot be strictly control. 

Therefore, we propose an unsupervised learning 

approach to automatically label the signal quality 

after self-learning the diverse behaviors of raw 

heartbeats corrupted by motion artifacts. Further 

learning motion artifacts-impacted behaviors of 

raw PPG heartbeats is based on the observation 

that the PPG signal is of less signal characteristics 

and thus more sensitive to motion artifacts than the 

ECG signal. Therefore, the difference between high 

quality and low quality raw PPG heartbeats is more 

learnable for an unsupervised learner. Firstly, the 

PPG stream is split to raw PPG heartbeat segments 

(s1-segmentation), which are then fed to a K-

medoids clustering-based learner to determine a 

high quality heartbeat template (s2-template 

learning). Afterwards, the learned template is used 

to screen the raw PPG heartbeats to quantify the 

degree of distortion based on the DTW approach 

(s3-HB distortion), which can effectively measure 

the dissimilarity between raw heartbeats owning 

time varying length/morphology and the learned 

template using a dynamic programming strategy. 

The distortion values measured are used to learn by 

a histogram triangle-based method a distortion 

threshold (s4-threshold learning), which can be 

applied to generate binary heartbeat-specific signal 

quality indices for heartbeat purification purpose 

(s5-s8). 

  

1) PPG Segmentation  

   The PPG stream is segmented based on the raw 

PPG heartbeat locations identified. 

 

2) K-medoids Clustering-based Template Learning  

   A PPG heartbeat template with a good 

morphology is needed by the DFT algorithm, to 

screen the raw PPG heartbeats to calculate their 

distortion values used in signal quality labelling. 

However, there is no pre-labeled signal quality 

information to directly perform PPG template 

selection, otherwise, it is unnecessary to perform 

the unsupervised learning of signal labelling in the 

proposed system. It is known that when there are 

more motion artifacts, there is also more 

morphological randomness in the raw heartbeats, 

which results in a decreasing consistency among 

them. If we partition the raw heartbeats into 

different groups according to beat-to-beat 

consistency, the high quality heartbeats are more 

likely to be clustered together benefitting a better 

inter-beat consistency, and the low quality 

heartbeats tend to be partitioned into multiple 

clusters due to much more diverse motion artifacts-

induced morphologies. Based on this consideration, 

a K-medoids clustering approach is introduced to 

learn a good PPG template from the raw heartbeats.                  

K-medoids clustering is a classical unsupervised 

machine learning algorithm which breaks the 

objects (raw heartbeats) up into clusters and attempt 

to minimize the distance (consistency) between 

objects belonging to a cluster and the representative 

object designated as the center (medoid) of that 

cluster. Therefore, the medoid that represents a 

highest number of objects is selected as the high 

quality PPG heartbeat template. Moreover, also to 

lower the computation load, the Euclidean distance 

is chosen to measure inter-object distance. Since the 

time-varying raw heartbeats are usually of different 

lengths, they are all resampled to own a length of 9, 

which is the averaged length of all raw heartbeats 

in, to enable the Euclidean distance calculation. 

 

3) Histogram Triangle-based Distortion Threshold 

Learning  

Based on quantified distortion evaluation of the raw 

PPG heartbeats, the next is to learn an appropriate 

distortion threshold to differentiate heartbeats with 

a good or a poor quality. The same consideration 

used in K-medoids clustering-based template 

learning is applied here, i.e., low quality raw 

heartbeats owning much more diverse distorted 

morphologies due to random motion artifacts. 

Therefore, statistically, in a distortion histogram, 
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the raw heartbeats with a relatively good quality 

should concentrate in the low distortion area (the 

left side of the x-axis), while the ones with 

gradually worse signal quality conditions usually 

spread over the higher distortion area (the middle 

and right side of the x-axis), due to poor consistency 

induced by random motion artifacts. Leveraging this 

interesting left-skewed histogram, we use an 

unsupervised learning approach called histogram 

triangle method to learn the distortion threshold 

 

4) Distortion Curve Smoothing  

   To further enhance the robustness before 

separating the raw PPG heartbeats to binary groups 

with a good or poor signal quality levels, the raw 

PPG heartbeats distortion values are smoothed by a 

10th order moving average method. This is based on 

the consideration that when some raw PPG 

heartbeats own high distortion values, they are 

either real heartbeats highly corrupted by severe 

motion artifacts, or motion artifacts-induced 

interferential spikes. Therefore, their neighboring 

raw PPG heartbeats with lower distortion values 

may also have a high possibility to be impacted by 

motion artifacts. The smoothing operation can 

elevate the low distortion values for these 

neighboring heartbeats, and help cluster raw 

heartbeats in suspicious time periods to the low 

signal quality group more strictly.  

 

5) SQI Generation 

Based on the learned distortion threshold and the 

smoothed distortion curve, the raw PPG heartbeats 

can now be clustered to binary groups with a good 

or poor quality level. Firstly, although the smoothed 

distortion curve V in the  trial can help elevate low 

distortion values when they are close to high 

distortion values (i.e., suspicious time periods), the 

smoothing operation usually lowers the high 

distortion values at the same time. It means that the 

unsmoothed distortion curve C can still contribute 

to highlight the heartbeats with high distortion 

values. Therefore, we compare not only the 

smoothed distortion curve but also the unsmoothed 

one to the learned distortion threshold ST for the 

SQI set generation. Secondly, the motion artifacts 

due to time-varying electrode-skin contact 

variations are so random that it is impractical to 

cover all motion artifacts scenarios in the training 

session. If there happen to be some severe motion 

artifacts resulting in very high distortion values in 

the testing session, they may over-elevate many low 

distortion values in the corresponding suspicious 

time periods. Consequently, this strict SQI 

generation procedure may filter out too many raw 

heartbeats in some trials. However, based on our 

observation, even after aggressively introducing 

twenty-second head movements-induced motion 

artifacts in each trial (the subjects are usually asked 

to stay during estimation, but we aggressively asked 

them to perform movements for one third of each 

trail time) , the heartbeats corrupted are still lower 

than fifty percent. Leveraging this observation, we 

introduce a heartbeats protection strategy to protect 

the best heartbeats in each trail, by adaptively 

increasing the learned threshold ST with a step size 

of * (1%) until at least heartbeats are labeled with a 

good quality level. To guarantee the consistency of 

the proposed SQI generation algorithm, this 

protection operation is also applied to the training 

session. The BP estimate quality indicator is also 

reported to reflect the percentage of raw heartbeats 

left after step 2 but before heartbeat protection. The 

indicator can be used to select out high confident 

BP estimates according to specific application 

requirements, After strictly labelling low quality 

raw PPG heartbeats and performing necessary 

heartbeats protection operations, the generated SQI 

set based on raw PPG heartbeats can now be used 

for heartbeats purification.  

 

6) PPG and ECG Heartbeats Purification.  

Considering there are still many residual highly 

corrupted and faking heartbeats, both raw ECG and 

PPG heartbeats are purified according to the SQI 

information, i.e., filtering raw heartbeats with an SQI 
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of 0 and keeping those with an SQI of 1. The purified 

heartbeats are then sent to the stage III of the 

proposed HR and SBP estimation algorithm. 

 

F. HR Estimation and Supervised Learning of SBP  

Estimation Based on the purified ECG heartbeats, 

the HR estimates can now be achieved, and together 

with purified PPG heartbeats, the PTT can also be 

measured. Afterwards, the SBP model can be firstly 

calibrated in the training session by a supervised 

learning process referring to the left arm cuff-based 

ground truth SBP, and then used for SBP estimation 

on the unseen data in the testing session.  

 

1) Heart Rate Estimation  

As mentioned above, the ECG signal is of a 

relatively better motion artifacts-tolerant ability 

than the PPG signal, therefore, the purified ECG 

heartbeats are used for instantaneous heart rate 

estimation. Then the windowed heart rate (denoted 

as HR, with a unit of beats-per-minute, denoted as 

BPM) estimates can be achieved, where the window 

corresponds to the second minute in each two-

minute trial during which the SBP cuff is measured. 

The performance of the estimated HR will be 

evaluated in terms of mean error ± standard 

deviation (ME±STD), mean absolute error (MAE) 

and root mean absolute error (RMSE).  

 
 

2) Pulse Transit Time Calculation  

Figure 2 Pulse transit time (PTT) measured with ECG 

and PPG signals (This illustration of PTT is based on 

ear-ECG/PPG signals). 

 

Pulse transit time is the time consumed by the 

pressure pulse to flow from the proximal (PTT start 

time) to the distal (PTT end time) arterials sites. As 

shown in fig 2 the ECG R peak represents when the 

pulse leaves the proximal site, i.e., the thoracic 

aorta, and the PPG foot corresponds to when the 

pulse arrives the distal site. Similar to windowed 

HR, the instantaneous PTT measured in the second 

minute of each trial is also averaged to obtain the 

windowed PTT estimates. Pulse transit time (PTT) 

measured with ECG and PPG signal. 

 

3) Blood Pressure Model Learning and Testing  

Due to the complicated underlying blood pressure 

wave generation and propagation mechanisms, 

many SBP learning models have been reported 

based on diverse assumptions and strategies. To 

thoroughly compare them and determine an 

appropriate one for ear application scenarios, ten 

popular SBP learning models including seven PTT-

SBP models, and three PTT&HR-SBP models with 

HR information enhanced. Among PTT-SBP models 

1 to 7, various styles of equations are applied, such 

as linear, quadratic, exponential ones and so on, 

based on different deduction processes. For 

example, the model 2 reflects the reverse 

correlation between PTT and SBP shown by large 

amounts of studies, based on the fact that a high 

SBP will reduce the time consumed by the pressure 

pulse to propagate from the proximal to the distal 

sites, and vice versa. The model 7 is based on the 

combined action of the pulse wave and the energy 

of wave. Among PTT&HR-SBP models 8-10, the 

HR information is introduced to model 

establishment. They are based on the consideration 

that when HR increases, the cardiac output flow 

usually increased at the same time which causes a 

higher SBP, and vice versa. One thing worth noting 

is that, for simplicity and convenience purpose, the 

PPT measurement method introduced above 

actually includes another extra item, i.e., the pre-

ejection period (PEP). PEP corresponds to the aortic 

valve opening time and usually significantly 
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increases the PTT measured. PEP can be measured 

by adding extra hardware components, such as the 

phonocardiogram (PCG) sensor or the impedance 

cardiography (ICG) sensor . Here, the PEP term is 

ignored for simplification purpose which is a 

common strategy used in many previous works . 

The HR information has been used to enhance the 

SBP model, therefore, we also consider PTT&HR-

SBP models, for comparison purpose. The HR 

information is already carried by the ECG signal 

and no extra hardware components are needed. In 

future, new sensors can be added to measure PEP 

for further model enhancement. The SBP models 

are learned on the training data and tested on the 

unseen testing data to show the generalization 

ability. The left-arm cuff-based SBP is used as 

reference to enable a supervised learning process. 

The performance is reported in terms of ME±STD, 

MAE and RMSE  

 

 1) Heart Rate Estimation  

As mentioned above, the ECG signal is of a 

relatively better motion artifacts-tolerant ability 

than the PPG signal, therefore, the purified ECG 

heartbeats are used for instantaneous heart rate 

estimation. Then the windowed heart rate (denoted 

as HR, with a unit of beats-per-minute, denoted as 

BPM) estimates can be achieved, where the window 

corresponds to the second minute in each two-

minute trial during which the SBP cuff is measured. 

The performance of the estimated HR will be 

evaluated in terms of mean error ± standard 

deviation (ME±STD), mean absolute error (MAE) 

and root mean absolute error (RMSE).  

 

2) Pulse Transit Time Calculation  

Pulse transit time is the time consumed by the 

pressure pulse to flow from the proximal (PTT start 

time) to the distal (PTT end time) arterials sites. As 

shown in Figure  2, the ECG R peak represents 

when the pulse leaves the proximal site, i.e., the 

thoracic aorta, and the PPG foot corresponds to 

when the pulse arrives the distal site, i.e., the skin 

surface where the PPG sensor is placed on similar to 

windowed HR, the instantaneous PTT measured in 

the second minute of each trial is also averaged to 

obtain the windowed PTT estimates.  

 

III. RESULT AND DISCUSSION  

 

A. Signals Acquired  

After situating the ECG electrodes behind two ears 

and the PPG sensor behind the left ear, our semi-

customized bio-potential acquisition platform 

successfully collected the ear -ECG (fig 3a)nd ear-

PPG (Figure  3b) signals, where the chest-ECG 

signal is also given for comparison purpose. The 

acquired ear-ECG signal is only around 5% of the 

chest-ECG signal in terms of peak-to-peak voltage, 

resulting from a much smaller potential difference 

between the back locations of two ears. Although 

the ear-ECG is highly weak, it can still show 

distinguishable heartbeats, especially clear QRS 

complex morphologies, even with continuous 

background motion artifacts due to uncontrolled 

neck muscle and blood vessels movements, 

indicating the effectiveness of the proposed non-

standard highly convenient single lead ECG 

configuration.  

Meanwhile, the acquired PPG signal also owns a 

clear heartbeat morphology leveraging many blood 

vessels around the back location of the ear. When 

performing  

 
Figure 3 
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i. Butterworth filtered ECG signal. 

ii. Butterworth filtered PPG signal.  

iii. Filtered ECG Zoomed. 

iv. QRS detection on ECG signal. 

head movements, many motion artifacts are 

induced to both ear-ECG and ear-PPG signals 

(Figure  4d and 4b) which make heartbeats 

identification highly challenging. Therefore, 

advanced signal processing and machine learning 

algorithms for robust heartbeat recognition are 

proposed to enable this highly wearable ear signal 

acquisition solution .  

 
Figure 4. distortion quantification using threshold 

learning 

 

Figure 4. An example of the signal segments 

acquired (chest-ECG, ear-PPG, and ear-ECG), 

showing that the weak ear-ECG has a peak-to-peak 

voltage only around 5% of that of the chest-ECG.  

 

B. Heartbeat Identification  

To identify raw heartbeats from motion artifacts-

impacted or even corrupted ear signals, our 

previously proposed Pan Tompkins algorithm is 

applied on the weak ear-ECG signal. Heartbeat 

identification results in the testing session of subject 

1 are given in Figure  4, where the raw ECG 

heartbeats are firstly identified and then the PPG 

heartbeats are determined by a simple minima 

searching method. There are several interesting 

observations as follows to support why we firstly 

identify the raw heartbeats from the ECG signal, 

and why we need to learn signal quality labelling 

based on the PPG signal in an unsupervised manner 

and purify both ECG/PPG heartbeats. 

 

Firstly, the ECG signal acquired with the non-

standard signal lead configuration is so weak that it 

is continuously impacted by the background motion 

artifacts due to uncontrolled neck muscle and blood 

vessels movements. Specially, in the signal periods 

not covered by the wide orange rectangles, the PPG  

Figure 5 Heart Beat identification on ECG signal 

based on Pan-Tompkins QRS detection method  

signal owns a better signal morphology compared 

with the ECG signal, which is even highly 

corrupted by the background motion artifacts. 

Therefore, we firstly perform raw heartbeat 

identification from the ECG signal. Since PPG 

heartbeat morphological characteristics (PPG feet) 

during these signal periods cannot reflect the 

heartbeat occurrence time for PTT calculation, we 

need to filter out these signal segments according to 

the signal quality of these raw PPG heartbeats. 

Heartbeat identification results in the testing 

session of the subject 1. Blue dots: identified raw 

ECG heartbeat locations; red dots: identified raw 

PPG heartbeat locations; wide orange rectangles: 

signal periods with deliberately introduced motion 

artifacts due to head movements; narrow orange 

rectangle: signal period with missing or fake 

heartbeats due to severe background motion 

artifacts; all the weak ECG signal is continuously 

impacted by background motion artifacts. Based on 

these considerations, we choose an unsupervised 

learning approach to learn how to generate the SQI 

information for each raw PPG heartbeat.  

 

C. PPG Segmentation and Template Learning  

To perform unsupervised learning of signal quality 

labelling, we apply a DFT method to quantify the 

degree of distortion for each raw PPG heartbeat. 

The PPG template for the DFT method is learned 

by the K-medoids clustering approach on the 

segmented raw PPG heartbeats. The clustering 

results are given in Figure 5 where raw heartbeats 

with a relatively good quality concentrate in the 

M1 cluster, and raw heartbeats with a poor quality 

are grouped into many other clusters due to the 

high randomness induced by motion artifacts. 

Consequently, the medoid in cluster 12 which 
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represents a highest number of instances (#=65%, 

i.e., 65% of raw heartbeats in the second minute in 

the first trial are grouped into cluster 12) is selected 

as the high quality PPG heartbeat template. One 

interesting observation is that some slightly 

distorted heartbeats are also grouped into this 

cluster since the other clusters correspond to raw 

heartbeats so randomly corrupted by severe motion 

artifacts due to head movements. The high quality 

PPG template can still be well leaned, because the 

K-medoids clustering algorithm makes each medoid 

represent the majority of instances in each cluster, 

i.e., minimizing the object-to-medoid dissimilarity a 

as . Figure  5. 

 

 
 

D. PPG Distortion Evaluation and Threshold Learning  

After quantifying the degree of distortion for all 

raw PPG heartbeats using the DTW method, the 

histogram triangle-based approach is proposed for 

PPG distortion threshold learning which will be 

used to generate the SQI information. An example 

is given in Figure  6, where a skewed intensity 

histogram of the DTW distances is constructed. The 

relatively good quality heartbeats concentrate in 

the low distortion area (the left side of the x-axis) 

and poor quality heartbeats spread over a larger 

range resulting from high and diverse distortion 

values due to random and severe motion artifacts.  

Figure  6 Figure  5. Two examples of heartbeat 

identification results in the testing session of the 

subject 1. Blue dots: identified raw ECG heartbeat 

locations; red dots: identified raw PPG heartbeat 

locations; wide orange rectangles: signal periods 

with deliberately introduced motion artifacts due to 

head movements; narrow orange rectangle: signal 

period with missing or fake heartbeats due to severe 

background motion artifacts; all the weak ECG 

signal is continuously impacted by background 

motion artifacts. 

 

The global searching process effectively captures 

the transition point of the histogram and 

determines the normalized threshold ÖST in this 

example as 0.07, which is then de-normalized and 

multiplied by a shrinkage factor to get the final 

distortion threshold ST which is 11.9 in this 

example. Figure  6.PPG distortion threshold 

learning in the first trial in the training session of 

subject 1. Blue line: the histogram hypotenuse; red 

curve: the histogram envelope; green line: the 

maximum perpendicular distance; green dot: the 

learned normalized (0-1 range) threshold.  

 

E.SQI Generation and Heartbeats Purification  

Based on the DFT distance-based distortion values 

and the learned distortion threshold, we now can 

generate the SQI information for all PPG raw 

heartbeats in the training or the testing session. The 

acquired thirty-minute ear-ECG and ear-PPG 

streams are shown in Figure  7a and 7b, where 

fifteen pink segments in each stream corresponding 

to the second minute in each of fifteen trials. In 

each pink segment, there is head shaking 

movement during the first ten seconds and nodding 

movement during the fourth ten seconds, resulting 

in many severe motion artifacts which increase the 

peak-to-peak voltage. In the last eight black 

segments, there are exercise-induced signal 

variations (riding the bike), especially in the ear-

PPG stream. In the first seven black segments, there 

are also some signal variations due to normal head 
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movements. The calculated unsmoothed DFT 

distance and the smoothed one are given in Figure  

7c, which shows diverse degree of distortion caused 

by both background and deliberately introduced 

motion artifacts. Based on SQI algorithm proposed, 

the distortion threshold is adaptively elevated if the 

best) heartbeats need to be protected. Finally, the 

raw PPG heartbeat-specific SQI information is 

generated as Figure  8d During deliberately 

introduced head movements (wide orange 

rectangles), the DFT distance-based distortion 

values (black bars) are much higher than those in 

other time periods. The smoothing operation of the 

distortion values can make the low distortion values 

above the distortion threshold and thus pose a more 

critical distortion evaluation during these highly 

suspicious periods (wide orange rectangles). On the 

other hand, the unsmoothed distortion values can 

still highlight the heartbeats with a high distortion 

condition (around minute 13.37). 

 
Figure 7. Curve smoothing and SQI Generation 

using DFT 

 

Besides, the motion artifacts are so random that it is 

difficult to include all motion artifacts scenarios in 

the training session. If there happen to be some 

highly random motion artifacts. The corrupted PPG 

morphologies may induce dramatically high 

distortion values which generate a large range of 

suspicious period. This shows the necessity to 

introduce a protection mechanism to adaptively 

elevate the distortion threshold for some trials to 

protect the best) (20%) heartbeats. Based on the 

proposed SQI generation algorithm, the raw 

heartbeats are labelled as accepted (SQI = 1) or 

rejected (SQI = 0), which helps filter out many 

signal segments highly corrupted by severe motion 

artifacts such that the remaining purified heartbeats 

can be used in HR and PTT estimation later. Figure  

7. The whole SQI generation process in the testing 

session of subject 1, including the signals acquired, 

quantified degree of distortion for raw PPG 

heartbeats, the adaptive distortion threshold and 

the SQI sequence generated 

 

F. Heart Rate Estimation  

The windowed heart rate estimates are achieved 

based on the ECG heartbeats. A Bland-Altman plot 

for estimated and reference HR is given in Figure  8 

to illustrate the HR estimation performance. It 

shows that most of the HR estimates concentrate in 

the low error area, indicating the potential of using 

ear-ECG for robust long-term HR monitoring 

applications. Averaged over the acquired ear signal 

dataset, the ME±STD, MAE and RMSE of HR 

estimation are 0.8±2.7, 1.8 and 2.8 BPM, 

respectively. In table 2, the HR estimation 

performance using our approach greatly 

outperforms KLMF and DFT. For KLMF, a 

smoothing operation is applied to suppress the 

abnormal measurements based on the outlier 

indicators generated by the impulse rejection filter. 

However, the robustness of the outlier indicators is 

still very low due to the fact that the beat-to-beat 

checking rules used in this filter cannot effectively 

cover highly random cases due to large amounts of 

motion artifacts. For DFT, the low performance 

mainly suffers from the fact that the motion 

artifacts usually own a frequency spectrum highly 

overlapping that of the ECG signal. Therefore, there 

are still many residual motion artifacts in the 

reconstructed signal which lower the HR 

estimation performance 

 

G. Blood Pressure Estimation  

Based on HR and PTT estimates, ten diverse SBP 

models including seven PTT-SBP models (1-7) and 

three PTT&HR-SBP models (8-10) are thoroughly 

compared to explore their abilities in SBP estimation. 

According to the Advancement of Medical 

Instrumentation (AAMI) standard, the BP estimation 
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error should be less than 5.0 ± 8.0 mmHg in terms of 

mean error (ME) ± standard deviation (SD). To 

thoroughly evaluate the SBP estimation performance, 

we consider four different criteria including ME, STD, 

MAE and RMSE. Moreover, although many wearable 

BP estimation studies only reported the performance 

on the training data, we test the proposed algorithm 

on the unseen testing data to emphasize the 

generalization ability of the learned SBP models. The 

performance comparison of ten SBP models and three 

signal processing approaches on the unseen testing 

data is summarized in Table 3. Using the proposed 

framework, model 8-10 effectively outperform model 

1-7 leveraging the additionally introduced robust HR 

information, with the ME±STD, MAE and RMSE no 

more than -1.4±5.2, 4.2 and 5.4 mmHg, respectively. 

Compared with our framework, MLMF and DFT both 

show a worse performance due to the reason 

mentioned above, i.e., many residual motion artifacts. 

One thing worth noting is that model 8-10 for KLMF 

and DFT may even own worse performance than 

model 1-7, due to the introduction of low robust HR 

information into the BP models. To further illustrate 

the performance difference between the PTT-SBP 

models and the PTT&HR-SBP models. The latter one 

owns a smaller mean error and a more concentrated 

distribution (a smaller standard deviation) compared 

to the former one, indicating that the PTT-SBP model 

can be enhanced by the HR information, yielding a 

more robust PTT&HR-SBP model. On thing worth 

noting is that we have introduced exercise to perturb 

the BP to make the trained SBP model be able to 

cover a large range of BP (similar to many studies), 

and we did found strong correlations between heart 

rate and SBP (similar to the previous study ), but more 

data acquisition protocols are also necessary 

considering that the relation between heart rate and 

SBP may need to be further explored. 

 

IV. CONCLUSION 

 

In this paper we propose monitoring of blood pressure 

and heart rate using Discrete  Fourier Transform and 

Pan Tompkins algorithm to achieve higher wear 

ability and high accuracy. Motion artifacts induced by 

the head movements are deals with machine learning 

framework to enable practical application scenarios. 

Here we suggest to place all the 

electrocardiography(ECG) and  

photoplethysmography(PPG) sensors behind two ears 

to successfully acquire weak ear -ECG/PPG signals 

using a semi customized platform. After introducing 

head motions towards ,we apply a unsupervised 

learning algorithm ,Pan Tompkins to learn and 

identify raw heartbeats from motion artifacts 

compacted signals. Further more, we propose another 

unsupervised learning algorithm to filter out 

distorted/faking heartbeats, for the estimation of ECG 

to PPG pulse transit time(PTT) and HR. Specifically, 

we introduce a Discrete Fourier Transform(DFT) to 

quantify distortion conditions of raw heartbeats 

referring to a high quality heartbeat pattern, which 

are then compared with a threshold to perform 

purification. The heartbeat pattern and the distortion 

threshold are learned by a K-medoids clustering 

approach and a histogram triangle method, 

respectively. Afterwards, we perform a comparative 

analysis on ten PTT or PTT&HR-based BP learning 

models. This study is expected to demonstrate the 

feasibility of the proof-of-concept system in wearable 

ear-ECG/PPG acquisition and motion-tolerant BP/HR 

estimation, to enable pervasive hypertension, heart 

health and fitness management. In future, we will 

acquire data from more subjects, and also further 

introduce motion artifacts from more scenarios, such 

as walking, running, sleeping, eating, etc. Another 

interesting work is to enhance the power efficiency of 

this easy-wearing blood pressure system for long-term 

wearable application scenarios. 
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